Industrial Refrigeration

Bitzer

The BITZER Group provides innovative products and services in refrigeration and air conditioning technologies. Their products play a vital role in maintaining ideal temperatures in various applications, from buses and trains to buildings and food transportation. Fueled by a commitment to perfection, precision, efficiency, and sustainability, BITZER shapes the industry with specialist skills and a […]

Bitzer Read More »

Kramer

Kramer, founded in 1914, is a leading manufacturer of energy efficient large refrigeration units, split systems, condensers and evaporators for the foodservice, food retail warehouse, industrial, and pharmaceutical industries. Kramer’s patented energy-saving technologies are recognized as the most efficient in the industry.

Kramer Read More »

Scroll to Top

Single Circuit

Intertwined

Face Split face

Use a caliper or tape measure to determine the outside diameter of the tubes.

If necessary, remove insulation to see the incoming and outgoing lines. Measure the diameter of the outside of the line to help determine connection size.

Standard connection types are MPT (male pipe thread), FPT (female pipe thread), and Copper Sweat Connection. MPT is threaded on the outside, FPT is threaded on the inside, and Copper Sweat is used for soldered connections

Using a ruler, count the number of fins on the coil within one inch. Normal fin counts will be between 4 and 14 FPI.

Measure in the direction of the tubes, regardless of which direction the tubes are running.

Measure in the direction of the fin.

Rows are counted in the direction of airflow, no matter how the coil is installed. You can count rows by looking at either the header end or the return bend end of the coil. Note that headers or return bends may not be evenly spaced across the coil.

Fluid coils—hot water, chilled water, and glycol water—regulate building air temperature by heating or cooling air in Air Handling Units (AHUs). Constructed with multiple rows of tubes, typically copper, these coils efficiently transfer heat between air and circulating fluids. They are vital for year-round comfort, accommodating diverse fluids like glycols and thermal oils for varied HVAC needs.

Condenser coils transfer heat from refrigerant vapor to the outdoor air, ensuring efficient cooling in HVAC and refrigeration systems. Constructed from materials like copper or aluminum to maximize heat transfer, these coils are vital for maintaining precise temperature control in industrial and commercial environments.

Steam coils utilize the latent heat of steam, released during condensation from vapor to liquid. They feature efficient condensate management to prevent water buildup and ensure uniform steam distribution. Available in configurations for high and low-pressure applications, steam coils are highly effective for heating air in a wide range of environments.

Evaporator coils absorb heat from indoor air to cool and dehumidify spaces by evaporating refrigerant from liquid to vapor. Located indoors, these coils are essential for maintaining comfortable environments in industrial and commercial settings, offering excellent performance in cooling, process cooling, and dehumidification applications. They are versatile for use in Air Handling Units (AHUs), central systems, or duct installations.